ar X iv : c on d - m at / 9 60 80 58 v 1 1 3 A ug 1 99 6 Antiresonance and Localization in Quantum Dynamics

نویسندگان

  • E. Eisenberg
  • N. Shnerb
چکیده

The phenomenon of quantum antiresonance (QAR), i.e., exactly periodic recurrences in quantum dynamics, is studied in a large class of nonintegrable systems, the modulated kicked rotors (MKRs). It is shown that asymptotic exponential localiza-tion generally occurs for η (a scaled ¯ h) in the infinitesimal vicinity of QAR points η 0. The localization length ξ 0 is determined from the analytical properties of the kicking potential. This " QAR-localization " is associated in some cases with an integrable limit of the corresponding classical systems. The MKR dynamical problem is mapped into pseudorandom tight-binding models, exhibiting dynamical localization (DL). By considering exactly-solvable cases, numerical evidence is given that QAR-localization is an excellent approximation to DL sufficiently close to QAR. The transition from QAR-localization to DL in a semiclassical regime, as η is varied, is studied. It is shown that this transition takes place via a gradual reduction of the influence of the analyticity of the potential on the analyticity of the eigenstates, as the level of chaos is increased.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : c on d - m at / 9 60 80 07 v 1 2 A ug 1 99 6 The Edge Currents and Edge Potentials in IQHE

It is shown that an observed length in the potential drops across IQHE samples is a universal length for a given value of magnetic field which results from the quantum mechanical uncertainty relation.

متن کامل

ar X iv : c on d - m at / 9 60 80 14 v 1 5 A ug 1 99 6 Why DNA ?

A small collection of general facts related to DNA is presented.

متن کامل

ar X iv : h ep - l at / 9 60 80 48 v 1 9 A ug 1 99 6 1 DESY 96 - 153 Low - Lying Eigenvalues of the Wilson - Dirac Operator ∗

An exploratory study of the low-lying eigenvalues of the Wilson-Dirac operator and their corresponding eigen-vectors is presented. Results for the eigenvalues from quenched and unquenched simulations are discussed. The eigenvectors are studied with respect to their localization properties in the quenched approximation for the cases of SU(2) and SU(3).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996